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NEW APPROACHES TO DETECTING DISCRIMINATION ‡

On the Inequity of Predicting A While Hoping for B†

By Sendhil Mullainathan and Ziad Obermeyer*

One of the most influential papers in manage-
ment is perfectly summarized by its title: “On 
the Folly of Rewarding A, While Hoping for 
B” (Kerr 1975). We incentivize teachers on test
scores, and we get higher test scores, not neces-
sarily more learning. We pay hospital systems 
to deliver treatments, and we get more utiliza-
tion, not necessarily healthier patients. A similar 
maxim applies to prediction. We build algo-
rithms to predict  Y , and they will optimize that 
objective, no matter whether our objective was  Y  
or   Y   ⁎  . This discrepancy can be a major driver of
algorithmic bias. We show this using examples 
from health care, where algorithms are already 
widely deployed and influence life and death 
decisions. But the forces we consider apply 
broadly, to a range of other important social sec-
tors where algorithms are increasingly used.

The specific mechanism of bias we consider 
arises from label choice: the choice of a biased 
proxy as the algorithm’s prediction target.1 It 
is distinct from other mechanisms in the litera-
ture, for example when an algorithm trained on 
one group fails to generalize to another (e.g.,
pulse oximeter devices fail to detect dangerously 
low oxygen levels in darker skin). It is likewise

1 We follow the convention in machine learning of denot-
ing the dependent variable the label.

 unrelated to the decision to include or exclude 
race as a model predictor. Biased labels can induce 
bias even if race is excluded—as in the empirical 
example below. More extreme measures, such as 
excluding race and further ensuring that model 
predictions are orthogonal to race—also the case 
in our example below—will likewise fail to cor-
rect label choice bias. And conversely, inclusion 
of race as a predictor will not necessarily induce 
bias, unless the label is also biased.

We focus on label choice for two reasons. 
First, we have found that, relative to its impor-
tance as a source of bias, it is  underappreciated. 
Second, despite the  large-scale distortions it 
induces, it is difficult to detect. Unlike failures 
of model generalization, which are straightfor-
ward to check by comparing predictive perfor-
mance across groups, exposing label choice 
bias requires more detective work. It requires 
understanding how algorithms influence 
 decision-making in context and how structural 
biases affect measurement of the label.

I. An Empirical Example of Label Choice Bias

We illustrate the importance and the sub-
tlety of label choice bias with an example of 
 large-scale racial bias in an algorithm used to 
target extra help to patients with complex medi-
cal needs (Obermeyer et al. 2019). Nearly every
major health system uses “ high-risk care man-
agement” programs to help  high-risk patients 
manage chronic illnesses. The goal is to prevent
exacerbations of these illnesses and thereby 
reduce associated costs, e.g., from emergency 
and hospital utilization, making this a win-win 
for patients and the health system. Because pro-
gram resources are themselves costly, algorithms 
have come into wide use for targeting programs 
to those who need them most. Industry estimates 
suggest that 150 million patients are screened 
every year by algorithms that trawl through 
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patients’ health records to generate risk scores. 
In the setting we study, as in every other setting 
we have worked since, algorithm scores are used 
to screen out  low-risk patients from consider-
ation, prompt clinicians to consider enrolling 
others, and screen in the  highest-risk patients.

How would we define algorithmic bias in 
this setting? Many measures of bias have been 
proposed, but these are inconsistent—two 
 plausible-sounding measures can paint a contra-
dictory picture of the extent of bias (Kleinberg, 
Mullainathan, and  Raghavan 2016). We thus 
choose a measure that captures the conse-
quences of bias for patients, in terms of who gets 
access to extra resources in light of their health 
needs. Denote the risk score  S , the intervention 
it is used to help allocate  T , patient  i ’s health  H , 
and a vector of ( pre-treatment) patient covari-
ates  X , including indicator  B  for membership 
in a protected group (we consider, without loss 
of generality, a simple example with only one 
group). We consider a thought experiment with 
two patients, one Black and one white. If they 
have the same health, and thus the same health 
needs, does the algorithm score them similarly? 
Alternatively, if they have the same algorithm 
score, do they go on to have the same health 
needs? This definition of bias captures dispari-
ties in needs given equal treatment and is akin 
to “calibration”: it compares  E [H  |  S, B = 0]   to 
 E [H  |  S, B = 1]  . At the core of this definition is 
the fact that those with the same algorithm score 
have the same likelihood of getting extra help 
with their health needs. So they should have 
the same needs: an unbiased algorithm should 
assign the same score to patients with the same 
health needs, irrespective of race.

To measure health needs, we assembled data 
on a range of health outcomes over the year fol-
lowing algorithm score assignment and com-
pared these for Black and white patients with 
similar scores. We found that Black patients 
went on to have far greater health needs than 
white patients. Figure  1 (analysis of data also 
appearing in Obermeyer et al. 2019, where links 
to replication data can be found) shows this for 
one important measure of health: the number 
of exacerbations of chronic illnesses ( y -axis) 
was much higher for Black patients conditional 
on risk score ( x- axis). The magnitude of bias 
was such that an unbiased algorithm would 
have increased the fraction of Black patients 
 fast tracked into the program, from 17.7 to 

46.5 percent. At 17.7 percent, Black patients 
were already  overrepresented in the  fast track 
relative to the base rate of 12.3 percent in this 
population. This highlights the need for mean-
ingful measures of bias: targets based on identity 
criteria alone, like population representation, 
can understate (or overstate) its extent.

II. Measurement Error and Biased Proxies

Where did the algorithm go wrong? One 
important clue can be found in where it went 
right: its performance for predicting health-
care costs over the next year was accurate and 
unbiased. In fact, the algorithm was specifically 
trained to predict health-care costs, a target that 
is subtly but importantly different from the one 
articulated in the developer’s promotional mate-
rials:2 to “determine which individuals are in 
need of specialized intervention programs and 
which intervention programs are likely to have 
an impact on the quality of individuals’ health.”

An issue increasingly raised in the machine 
learning literature is how to translate  semantic 
statements about an algorithm’s goal into a 
 well-defined objective function calculable in 
some dataset (Passi and  Barocas 2019). The 
aforementioned text implies that the algorithm 
estimates  individual-level treatment effects 

2 https://www.optum.com/content/dam/optum3/optum/
en/resources/sell-sheet/impact-pro-sell-sheet.pdf.

Figure 1. Exacerbations of Chronic Illness by Race 
( y -axis) versus Risk Score ( x -axis; percentile)
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of interventions on a patient’s health. Using 
potential outcomes notation to capture treated 
and untreated health outcomes   H 1    and   H 0   , such 
an ideal risk score could be written   S  i  

⁎  = E 
[ H 1i   −  H 0i   |  X i  ]  . But given the difficulty of this 
estimation problem, the algorithm’s creators 
make a simplifying assumption: those with 
the greatest (untreated) health needs will have 
the greatest benefit from interventions. This 
turns a challenging causal inference task into a 
straightforward prediction problem (Kleinberg 
et  al. 2015) and yields the simpler risk 
score,   S i   = E [ Y 0i   |  X i  ]   (we will omit the sub-
scripts and potential outcomes from now on), 
where  Y  is a proxy for future health-care needs.

But which proxy to use? “Health needs”—
and even “health”—is a latent variable with no 
simple empirical definition. So the algorithm 
designers make another critical assumption: that 
future health-care costs  C  are a good proxy for 
health needs today. Cost is an appealing variable 
to use: it is clearly correlated with health needs, 
present in the large datasets owned by insurers, 
and available to researchers. It requires no labo-
rious cleaning; missing values are zero. So it is 
comparatively easy for a data science team to 
produce an algorithm that predicts  S = E [C | X]  .

Of course, while costs and health needs are 
correlated, they are not the same:

  C = H + Δ .

As a long tradition of research has shown, costs 
vary widely across hospitals and geographies 
with similar health outcomes. That practice vari-
ation and  overuse contributes to these trends is 
 well established. But  underuse also contributes: 
a patient’s lack of knowledge that subtle squeez-
ing in the chest can be a heart attack, lack of 
access to health care or insurance, or differential 
treatment by doctors.

In other words, despite being a reasonable 
proxy for health, cost is a biased one: the  Δ  term 
is not random with respect to socioeconomic 
and racial variables like  B . Because of  structural 
biases and differential treatment, Black 
patients with similar needs to white patients 
have long been known to have lower costs: 
 E [C |  H, B =  1]  <  E [C  |  H, B =  0]  . So 

 algorithmic risk scores based on  E [C  |  X]   will 

build in a large negative bias for Black patients, 

because   E [Δ  |  B = 1]  < E [Δ  |  B = 0]  .

More generally, whenever an algorithm’s 
literal target Y differs from its true target   Y   ⁎  —
often because the true target is unmeasured—we 
can write that 

  Y =  Y   ⁎  + Δ .

Algorithms that predict  Y  will automate the 
error  Δ  along with the true—but  mismeasured—
signal   Y   ⁎   (Mullainathan and Obermeyer 2017). 
This idea has two implications for algorithmic 
bias. First, algorithmic predictions can be more 
biased than the original variable they predict. If  Δ  
is more predictable with  X  than   Y   ⁎   is, predictions 
will be dominated by  Δ , not   Y   ⁎  . And since  Δ  is 
often an  all-too-simple function of obvious socio-
economic and racial inequities, we might expect  
 cov ( Y   ⁎ , B)  < cov (Δ, B)  . So, automating 
undesirable parts of a target variable will impact 
some groups more than others, creating label 
choice bias. Importantly, such predictions will 
appear accurate and show no bias when evalu-
ated on traditional metrics of loss of the form 
 L (S, Y)  :  Δ  is just as much a part of the mea-
sured  Y  variable as   Y   ⁎   is. Second, this bias can 
arise even if  Y  and   Y   ⁎   are highly correlated. If 
the variances of  Y  and   Y   ⁎   are large, only a small 
fraction of the total variance will be due to race. 
However, the predictable variance in  Y  due to  B  
can be arbitrarily large.

III. Conflating Costs and Needs

Why did the algorithm’s creators choose to 
predict costs rather than needs? An easy explana-
tion is that the developer, and the health systems 
that purchase its software, care more about costs 
than patients’ health. So our results could rep-
resent a “prediction externality,” where society 
cares about health, but private companies care 
only about costs. In this setting, an algorithm 
that accurately predicts  C  allows companies to 
optimize purely on this metric and increases the 
size of the externality   (H − C)  .

We cannot say definitively how the deci-
sion was made. But our experience, as well as 
evidence from elsewhere in the health sector, 
points to a less nefarious—but perhaps more 
 concerning—reason: a broader tendency to 
 conflate health-care costs with health needs, 
well beyond the algorithm we study. In fact, 
the company that developed the algorithm was 
highly motivated to understand and solve the 
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problem we identified. After we first noted bias 
in the algorithm, we initiated an (unpaid) collab-
oration with them to understand and correct the 
problem. All of our interactions with the tech-
nical team that developed the algorithm, and 
the executives who authorized and supported 
the work, indicated that their intention was not 
to optimize cost prediction at the expense of 
health. That collaboration led to a revised ver-
sion of the algorithm with far less bias. The only 
change was that the new algorithm predicted 
outcomes related to health, e.g., exacerbations 
of chronic illnesses in the same dataset used to 
train the original algorithm, not cost alone. As 
a bonus, because health and cost are correlated, 
this revised algorithm still performed reasonably 
well in predicting costs. The intuition is that 
there are many possible functions, all producing 
correlated predictions but having different cor-
relations with race (Obermeyer et al. 2019).

The enterprise of predicting cost, as opposed 
to health, goes well beyond one company’s algo-
rithm. Promotional materials for algorithms, 
including but not limited to the one we stud-
ied, are very transparent about the fact that they 
predict costs. A review of the ten most  widely 
used algorithms for targeting care management, 
conducted by the Society of Actuaries in 2016, 
judged them explicitly by their accuracy for 
cost prediction. Two of these ten were devel-
oped by academic groups, one by the Centers for 
Medicare and Medicaid Services. These organi-
zations did not catch the  racial bias induced by 
cost prediction, nor did the health systems that 
purchased the tools—many of which have deep 
commitments to reducing health disparities. Nor 
did the physicians who had every opportunity 
to overrule the algorithm, nor did the millions 
of patients whose care was affected. We have 
 replicated our  finding of bias in another one of 
these  widely used algorithms, this time deployed 
at a large health insurer: a  nonprofit entity that 
employs a diverse team of  full-time ethicists, 
who work with their clinicians and data scien-
tists, and is advised by an ethics advisory group 
that actively incorporates input from employees, 
patients, and others. Despite this, a biased algo-
rithm was in wide use for years.

We believe these biases go unsuspected and 
undetected because the conflation of costs with 
needs is common in health care. But it is just 
one instance of a deeper problem in many social 
sectors: making inferences about complex latent 

variables via biased proxies. In criminal jus-
tice, arrests and convictions are not the same as 
someone’s propensity for crime. In education, 
test scores are not the same as teacher and stu-
dent ability. In employment, interview and peer 
ratings are not the same as employee quality. 
Despite Goodhart’s cautionary law, it is all too 
common for such measures to become targets. 
As algorithms begin to automate these targets, 
biases and other distortions can scale rapidly, 
unchecked by human judgment.

IV. Label Choice Bias Elsewhere in Health Care

Label choice bias is not limited to health 
algorithms: it also manifests in health policy, 
where the stakes can be even higher. The recent 
CARES Act for  COVID-19 relief, for example, 
was passed by Congress to address two urgent 
needs: compensating health providers for  the 
expenses of caring for patients with  COVID-19 
and offsetting revenue loss from reduced utili-
zation due to the pandemic. These stated needs 
(  Y   ⁎  ) were then formulated in terms of measur-
able quantities ( Y ) in order to guide allocation of 
the $175 billion dollars of funding to health sys-
tems. The  Y  variable chosen: a provider’s total 
revenue the year before  COVID-19.

This label choice produced two distortions. 
First, many  hard-hit areas received far less fund-
ing than they needed based on a range of other 
important measures of need:  COVID-19 burden, 
baseline population illness, or area  hospitals’ 
financial distress. Other areas, largely spared by 
the pandemic and with  well-resourced hospitals, 
received so much funding that some hospitals 
(e.g., Hospital Corporation of America, Kaiser 
Permanente) announced they were giving it 
back. It is unusual, to say the least, for hospitals 
to refund money to the federal government—a 
testament to the extent of the  misallocation. 
Second, the degree to which regions were over- 
or  underfunded was highly correlated with race, 
an instance of label choice bias. Comparing 
counties receiving the same amount of funding, 
Black counties had twice the COVID-19 bur-
den, as shown in Figure 2 (analysis of data also 
appearing in Kakani et  al. forthcoming, where 
links to replication data can be found). The 
decision to allocate funding proportional to 
hospital revenue or utilization is not unusual 
in health: Medicare programs, such as the 
Disproportionate Share and 340B drug rebate 
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programs, do the same, likely inducing similar 
biases in tens of billions of dollars of subsidies 
every year.

Several other instances of label choice bias 
have emerged from our collaborations with 
large organizations in health, including hospital 
systems, for- and  nonprofit insurers, state and 
federal agencies, software companies, and oth-
ers. As part of these partnerships, we conduct an 
inventory of algorithms deployed at each organi-
zation and grade each on its potential for bias. A 
key task is to articulate the exact target an algo-
rithm is predicting and compare it with what an 
ideal target would be for a given decision. We 
highlight in Table 1 some particularly important 
and widespread examples of label choice bias 
that were brought to light through this process.

The first three examples relate to bias in triage 
tools. The Emergency Severity Index is used by 
triage nurses in emergency departments across 
the world. It assigns patients a score that dictates 
how long they can safely wait before seeing a 
doctor. The two prediction targets are the nurse’s 
perception of the patient’s acuity and expectation 
of how many “resources the patient is expected 
to consume.” There are growing numbers of 
attempts to automate this score, which risk auto-
mating known disparities between groups in 
resource use (conditional on acuity), based on 
insurance, language, race, and access to care. 
Second, the “ 6-Clicks Mobility Score” mea-
sures a patient’s objective mobility and  ability to 

 perform activities. It is used to guide planning for 
hospital discharge: patients with low mobility, 
who may be unable to care for themselves inde-
pendently at home, are considered for placement 
in an assisted living or rehabilitation facility. But, 
of course, two patients with identical mobility 
may have very different abilities to care for them-
selves because of access to transportation, family 
support, home amenities, and other factors linked 
to income. Third, algorithms are commonly used 
to optimize outpatient clinic schedules by iden-
tifying patients who are likely to choose to skip 
a scheduled appointment. Slots are then  double 
booked to maximize clinic productivity. But not 
all  no-shows are voluntary: some patients fail 
to appear because of barriers to access, or even 
worsening health. The optimal decision for these 
 no-shows, which are more common in disadvan-
taged groups, might not be to simply reallocate 
the clinic slot to another patient.

The last two examples concern bias in tools 
that predict onset of disease. A wide variety of 
algorithms are trained to identify patients who 
will go on to develop a disease, like diabetes 
or congestive heart failure, in order to target 
preventative care measures. These algorithms 
often predict the occurrence of International 
Classification of Disease (ICD) codes, which 
are appealing because they are widely avail-
able in the electronic records and claims data. 
But these codes, which are produced by trans-
actions between health systems and insurers, 
are as much financial data as medical data. 
Predicting them can thus automate both compo-
nents: signal for disease but also incentives to 
“ up-code,” which vary by hospitals’ billing and 
coding resources or the insurance of the patients 
they serve. It can also automate  underdiagnosis, 
particularly in patients who lack access to care 
or those who are misunderstood or dismissed 
by providers because of language, race, or edu-
cation (Mullainathan and Obermeyer 2016). 
Finally, many machine vision algorithms take 
in a medical image, like an  x-ray, and output a 
radiologist’s interpretation of that  x-ray. Because 
hospital datasets contain images paired with 
the radiologist’s reports, the latter is again an 
 appealing label based on its easy accessibility. 
But human interpretations are not ground truth. 
They too reflect varying hospital incentives to 
 overcall findings and can also miss important 
findings in some patient groups. This was illus-
trated in a recent example where an algorithm 

Figure 2.  COVID-19 Deaths ( y -axis) versus CARES Act 
Funding ( x -axis)
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was trained to quantify the severity of knee osteo-
arthritis by predicting patients’ pain ratings from 
their knee  x-rays (Pierson et  al. 2021). When 
this algorithm’s severity measure was compared 
to the traditional severity measure, based on the 
radiologist’s judgment, the algorithm explained 
a higher proportion of patients’ symptoms. This 
new explanatory power was particularly helpful 
for Black patients: it reduced the  Black-white 
gap in unexplained pain by nearly half.

V. Conclusions

Label choice is a major channel by which 
algorithms reproduce and scale up bias. But 
judicious label choice can also turn algorithms 
into a force for fighting bias. Finding the right 
labels to predict, of the hundreds or thousands 
of variables available in health datasets, is thus 
a particularly  high-value activity—but one 
that is dramatically  underresourced in current 
algorithm development pipelines. The applied 
empirical tool kit is likely to be useful in this 
regard. Understanding the data-generating pro-
cess, acknowledging the nature of health data 
as both biological and social phenomena, and 
measuring and addressing disparities are all 
important considerations for those seeking to 
use algorithms for social good.
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Table 1

Ideal target:   Y   ⁎  Actual target:  Y Source of bias:  cov (Δ, B)  

Emergency Severity 
Index: emergency triage

Medical condition needing 
immediate attention

 Nurse-rated acuity, 
“resources patient is 
expected to consume”

Resource consumption varies by 
race and insurance, conditional on 
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 6-Clicks Mobility Score: 
decisions about discharge 
destination

Inability to care for self at 
home without help

Physical measures of 
mobility and daily activities

Similar physical mobility scores 
have a larger impact on those 
lacking income

No-show prediction: 
clinic scheduling

Voluntary  no-show to 
appointment

Any  no-show to 
appointment

 No-shows due to access barriers 
unequally distributed

Predicting disease onset: 
targeting preventive care

New disease onset (e.g., 
heart failure, kidney 
failure)

Provider-insurer transaction 
with ICD code for disease

 Pr (Y |  Y   ⁎ )   varies by physician 
quality, hospital billing and coding, 
insurance, etc.

 Kellgren-Lawrence 
grade: osteoarthritis on 
knee  x-rays

Severity of knee 
osteoarthritis

Severity of osteoarthritis 
seen by radiologist on knee 
 x-rays

Radiologists miss causes of knee 
pain affecting  underserved groups
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